

Mathematics test

Duration 4h

Note: In each exercise, questions numbered 1, 2, ... are independent

Exercice 1. 6 pts

- 1. Let (u_n) be a sequence of positive terms. Show that the convergence $\sum_{n\in\mathbb{N}} u_n$ implies that of $\sum_{n\in\mathbb{N}} \frac{1}{n} \sqrt{u_n}$, and that the reciprocal is false.
- 2. Show that if the series $\sum_{n\in\mathbb{N}} v_n$ is alternating and the sequence $(|v_n|)$ is decreasing and tends to 0, then the series $\sum_{n\in\mathbb{N}}$ converges.
- 3. Represent the following domain

$$D = \{(x, y) \in \mathbb{R}^2; \ x \le 1, \ y \le 1, \ x + y \ge 1\}$$

and compute this integral

$$I = \int \int_{D} (x+y) dx dy$$

4. Let a, b and c be three reals. Determine the radius R and the convergence domain A of the power series $\sum_{n \in N} a_n x^n$ where $a_n = e^{an^2 + bn + c}$.

Exercice 2. 6 pts

- 1. Let $v: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a map. Connect the following props two by two.
 - A) v is continuous.
 - B) v admits continuous derivatives in all directions.
 - C) v is differentiable.
 - D) v is of class C^1 .
- 2. Consider the following set and matrix

$$V = \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix}, \ a, \ b, \ c, \ d \in \mathbb{R}, \ a - d = 0 \right\}, \quad J = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

and the map $g: V \times V \longrightarrow \mathbb{R}$, defined by g(M, N) = trace(MJN).

- (a) Show that g is bilinear. Is it symetric? Antisymetric?
- (b) Determine a base B of V.
- (c) Determine the matrix relative to the base B of the quadratic form q defined by

$$q(M) = g(M, M)$$

(d) Determine the kernel, rank and signature of q.

Exercice 3. 8 pts

1. Arrows are randomly shooted on a circular target of radius α , on which are drawn circles of radius $\frac{\alpha}{4}$, $\frac{\alpha}{2}$ and $\frac{3\alpha}{4}$. These circles delimit 4 different regions. It is assumed that the arrow reaches the target.

Calculate the probability of reaching each region.

- 2. It is assumed that a newborn's weight is normally distributed from standard deviation $0.5\ kg$. The average weight of 49 newborns in March in a hospital was $3.6\ kg$.
 - (a) Determine a 95% confidence interval of the average weight of a newborn in this hospital.
 - (b) What would be the confidence level of a confidence interval of amplitude $0.1 \ kg$ centered at $3.6 \ kg$ of this average weight?
- 3. Consider the random vector (X,Y) having the following probability density

$$f(x,y) = 2e^{-x-y}1_{0 < x < y}$$

- (a) Determine marginal densities f_X and f_Y of X and Y respectively.
- (b) Determine the distribution functions F_X and F_Y of X and Y respectively.
- (c) Are X and Y independent?
- 4. Consider two random variables X uniformly distributed on [0,1], and Y taking values in $\{-1,+1\}$. Assume that

$$P(Y = +1 | X = x) = \begin{cases} \frac{1}{4} & \text{si } x \in [0, \frac{1}{2}] \\ \frac{5}{6} & \text{si } x \in [\frac{1}{2}, 1]. \end{cases}$$

Compute the following probability $P(X \in [a, b], Y = +1)$ as a function of a and b with 0 < a < b < 1.